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We develop a Monte Carlo scheme for sampling series of Feynman diagrams for the proper self-energy,
which are self-consistently expressed in terms of renormalized particle propagators. This approach is used to
solve the problem of a single spin-down fermion resonantly interacting with the Fermi gas of spin-up particles.
Though the original series based on bare propagators are sign alternating and divergent, one can still determine
the answer behind them by using two strategies �separately or together�: �i� using proper series resummation
techniques and �ii� introducing renormalized propagators which are defined in terms of the simulated proper
self-energy, i.e., making the entire scheme self-consistent. Our solution is important for understanding the
phase diagram and properties of the Bardeen-Cooper-Schrieffer–Bose-Einstein Condensation crossover in the
strongly imbalanced regime. On the technical side, we develop a generic sign-problem tolerant method for
exact numerical solution of polaron-type models and, possibly, of the interacting many-body Hamiltonians.

DOI: 10.1103/PhysRevB.77.125101 PACS number�s�: 05.30.Fk, 05.10.Ln, 02.70.Ss

I. INTRODUCTION

Modern science has radically changed our view of the
physical vacuum. Instead of naïve “empty space,” we have to
deal with a complex ground state of an interacting system,
and, strictly speaking, there is no fundamental difference be-
tween the outer space, helium, or any other condensed matter
system. With this point of view comes understanding that the
notion of a “bare” particle is somewhat abstract since its
coupling to vacuum fluctuations, or environment, may
strongly �sometimes radically� change particle properties at
energies addressed by the experimental probes. The polaron
problem1 is by now canonical across all of physics with the
same questions about particle energy, effective mass, residue,
etc., being asked for different types of particles, environ-
ments, and coupling between them.2 In a broader context,
particles are not necessarily external objects unrelated to a
given vacuum, but quasiparticle excitations of the very same
ground state. Thus, the solution of the polaron problem paves
the way to the effective low-energy theory of a given system
and, to large extent, determines basic properties of all con-
densed matter systems at low temperature.

At the moment, there is no generic analytic or numeric
technique to study quasiparticle properties for arbitrary
strongly interacting system. Analytic solutions are typically
�with few exceptions, see, e.g., Ref. 3� based on perturbative
corrections to certain limiting cases1,2,4–6 or variational
treatment.7 Several numeric schemes were suggested in the
past, but all of them have limitations either in the system
size, system dimension, interaction, or environment type. Ex-
act diagonalization and variational methods in the low-
energy subspace8,9 are mostly restricted to one-dimensional
models with short-range interactions. The continuous time
path integral formulation10 works for the lattice model with
linear coupling between the particle and bosonic environ-
ment, but it cannot be generalized to fermionic environment,
sign-alternating coupling �as in the t-J model11�, nor is it

suitable for continuous-space models. Other techniques, for
example, impurity solvers developed for the dynamic mean-
field theory calculations,12,13 have similar �such as finite size
and short range� limitations.

In this paper �which follows a short communication14�, we
develop a Monte Carlo technique which simulates series of
Feynman diagrams for the proper self-energy. The diagram-
matic Monte Carlo �Diag-MC� technique was used previ-
ously to study electron-phonon polarons.15,16 The essence of
Diag-MC is in interpreting the sum of all Feynman diagrams
as an ensemble averaging procedure over the corresponding
configuration space. It was considered essential for the
method to work that the series of diagrams for the Green’s
function be convergent and sign positive. Though the con-
figuration space of diagrams for polarons in Fermi systems is
more complex, similar methods of generating and sampling
the corresponding configuration space can be used. The cru-
cial difference is that in the Fermi system, we have to deal
with the sign-alternating and divergent �at least for strong
coupling� series. Under these conditions, a direct summation
of all relevant Feynman diagrams for the Green’s functions is
not possible, and one has to develop additional tools for �i�
reducing the number of diagrams by calculating self-energies
rather than Green’s functions, �ii� employing the “bold-line”
trick in the form of the Dyson equation which allows self-
consistent summation of infinite geometric series and further
reduces the number of self-energy diagrams, and, if neces-
sary, �iii� extrapolating Diag-MC results to the infinite dia-
gram order for a divergent series. At the moment, we do not
see any obvious limitations of the method since even diver-
gent sign-alternating series can be dealt with to obtain reli-
able results. We believe that our findings are important in a
much broader context since the Diag-MC approach to the
many-body problem has essentially the same structure.

As a practical application of the method, we consider a
particle coupled to the ideal Fermi sea via a short-range po-
tential with divergent s-wave scattering length. This problem
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was recognized as the key one for understanding the phase
diagram of the population imbalanced resonant Fermi
gas.17,18 In particular, to construct the energy functional de-
scribing dilute solutions of minority �spin down� fermions
resonantly coupled to the majority �spin up� fermions, one
has to know precisely the quasiparticle parameters of spin-
down fermions since they determine the coefficients in the
energy expansion in the spin-down concentration x↓: The lin-
ear term is controlled by the polaron energy, and the x↓

5/3 term
is determined by the polaron mass.18

The general Hamiltonian we deal with in this paper can be
written as

H = HF −
�R

2m
+� drV�r − R�n�r� , �1�

where HF is the Hamiltonian of the ideal spin-up Fermi gas
with density n and Fermi momentum kF, R is the particle
coordinate, and V�r−R� is the interaction potential of finite
range r0 between the particle and the spin-up Fermi gas. In
what follows, we refer to Eq. �1� as the Fermi-polaron prob-
lem. The specifics of the Bardeen-Cooper-Schrieffer–Bose-
Einstein Condensation �BCS-BEC� crossover physics in the
strongly imbalanced regime is twofold: One is that the par-
ticle and the Fermi gas have the same bare mass m �in what
follows we will use units such that m=1 /2 and kF=1�, and
the other is that one has to take explicitly the so-called zero-
range resonant limit when r0→0, but the s-scattering length
a remains finite, i.e., kFa remains fixed for kFr0→0. In this
limit, the nature of the interaction potential is irrelevant, and
the same results will be obtained, e.g., for the neutron matter
and cesium atoms. We note, however, that the method we
develop for the numeric solution of the resonant Fermi-
polaron problem is absolutely general and can be used for an
arbitrary model described by Eq. �1�.

It turns out that the structure of the phase diagram is very
sensitive to polaron parameters. If the state with a dilute gas
of spin-down fermions is stable at all values of kFa, then the
solution of the single-particle problem would define the
phase diagram in the vicinity of the multicritical point dis-
cussed recently by Sachdev and Yang,19 where four different
phases meet. At this point, the spin-down fermion forms a
bound state with a spin-up fermion, thus becoming a spin-
zero composite boson �“molecule”�; i.e., quasiparticles radi-
cally change their statistics. The multicritical point, however,
may be thermodynamically unstable if the effective scatter-
ing length between the composite bosons and spin-up elec-
trons is large enough, and the analysis of Refs. 20 and 21
based on the fixed-node Monte Carlo simulations finds evi-
dence in favor of this scenario. Phase separation was also
found in calculations based on mean-field and narrow-
resonance approaches �both at finite and zero temperatures�,
see, e.g., Refs. 22–27, though with strong quantitative devia-
tions from results based on the fixed-node Monte Carlo
simulations.21 On the experimental side, Massachusetts Insti-
tute of Technology experiments28 are in good agreement with
the predictions made in Ref. 21, while Rice experiments29

are not. The origin of discrepancy between the two experi-

ments is not understood. Our results for polaron energies are
in excellent agreement with Ref. 21.

It is worth noting that model �1� �in general, the particle
mass is different from that of the Fermi gas� is also known as
the Anderson orthogonality problem with recoil.30,31 It can be
also considered as a specific example of a particle coupled to
the Ohmic dissipative bath �see Ref. 32 for numerous other
examples and connections to realistic systems�.

The paper is organized as follows. In Sec. II, we discuss
the configuration space of Feynman diagrams for self-energy
in momentum–imaginary-time representation �both in the
particle and molecule channels� and explain how polaron
parameters can be obtained in this representation. In Sec. III,
we describe a Monte Carlo algorithm for generating and
sampling the corresponding diagrammatic space. A small
technical section, Sec. IV, deals with numerically evaluating
the effective T-matrix by bold diagrammatic Monte Carlo.
We present and discuss results in Sec. V. In particular, we
show that one can use resummation techniques for divergent
series of diagrams based on bare propagators to determine
the final answer. In Sec. VI, we further advance the algo-
rithm by employing bold-line approach in which the entire
scheme is self-consistently based on renormalized �bold-line�
propagators. We present our conclusions and perspectives for
future work in Sec. VII.

II. CONFIGURATION SPACE OF SELF-ENERGY
DIAGRAMS

As mentioned above, when coupling between spin-down
and spin-up fermions is strong enough, they form a compos-
ite boson, or molecule state. In what follows, we will be
using the term “polaron� in a narrow sense, i.e., only for the
unbound fermionic spin-down excitation. For the composite
boson, we will be using the term “molecule.” Since our goal
is to calculate particle properties for arbitrary coupling
strength, we have to consider one- and two-particle channels
on equal footing. In the rest of this section, we render stan-
dard diagrammatic rules for irreducible self-energy diagrams
in both channels, with an emphasis on specifics of working
in the imaginary-time representation.

A. Polaron channel

We start from the definition of the single-particle Green’s
function �see, e.g., Ref. 33�,

G��,r� = − �T����,r��̄�0�� , �2�

and its frequency-momentum representation,

G��,p� =� ei���−p·r�G��,r�drd� . �3�

Here, ��� ,r� is the fermion annihilation operator at the
space-time point �� ,r�. For the ideal spin-up Fermi gas at
T=0, we have

G↑��,p� =
1

i� − p2/2m + �F
. �4�
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The vacuum Green’s function for the spin-down polaron
is

G↓
�0���,p,�� = − ����e−�p2/2m−���, �5�

where � is the step function and � is a free parameter. From
Dyson’s equation for the polaron, see Fig. 1, one finds

G↓��,p,�� =
1

i� − p2/2m + � − ���,p,��
, �6�

where self-energy � is given by the sum of all irreducible
diagrams �i.e., diagrams which cannot be made disconnected
by cutting through the G↓

�0� line� taken with the negative sign.
Taking into account that in the � representation both G↓ and
� depend on � only through exponential factors exp����,
one obtains G↓�� ,p ,���G↓��− i� ,p� and ��� ,p ,������
− i� ,p�.

If the polaron is a well-defined quasiparticle, then its en-
ergy E�p� and residue Z�p� can be extracted from the
asymptotic decay,

G↓��,p,�� → − Ze−�E−���, � → 	 . �7�

This asymptotic behavior immediately implies that the func-
tion G↓��− i� ,p� has a pole singularity,

G↓�� − i�,p� =
Z�p�

i� + � − E�p�
+ regular part. �8�

Now, setting �=E�p� in Eq. �8� and comparing the result to
Eq. �6�, we conclude that

i�/Z = i� − p2/2m + E − ��0,p,E� + i�A�p,E� , �9�

where �we take into account that �� /��= i�� /���

A�p,E� = − � ���0,p,��
��

�
�=E

. �10�

This yields two important relations �see also Ref. 33�:

E = p2/2m + ��0,p,E� �11�

and

Z =
1

1 + A�p,E�
. �12�

Equation �11� allows one to solve for E provided ��� ,p ,��
is known. All we have to do is to calculate the zero-
frequency value of � for �=E,

E =
p2

2m
+ �

0

	

���,p,��e�E−���d� . �13�

After E is found, the residue is obtained from Eq. �12� using

A�p,E� = − �
0

	

����,p,��e�E−���d� . �14�

Note also that the dependence on � drops out from both Eqs.
�13� and �14�.

A comment is in order here. Strictly speaking, polaron
and molecule poles exist only for p=0 because the fermionic
bath they couple to is gapless. However, the spectrum E�p� is
well defined in the limit p→0, as the decay width vanishes
faster than �E�p�−E�0�	. To have stable quasiparticles, one
can use a trick of introducing a gap � in the environment
spectrum, e.g., by redefining the dispersion relation for
spin-up fermions: 
k→max�
k ,��. In the p→0 limit, the
systematic error vanishes faster than �E�p�−E�0�	, provided
�
�E�p�−E�0�	. It should be also possible to work with �’s
essentially larger than �E�p�−E�0�	 and extrapolate to �
→0. In particular, such an extrapolation is possible �and is
implicitly implied� at the analytical level in the relation for
the effective mass, which we consider below.

One way to determine the effective mass is to calculate
the quasiparticle energy as a function of momentum for a set
of small but finite values of p and fit it with a parabola. It is,
however, possible to skip this procedure and to write a direct
estimator for the effective mass in terms of the calculated
self-energy. Acting with the operator �P

2 on both sides of Eq.
�11� and taking the limit p→0, we get

1 + A0

m*
=

1

m
+ B0, �15�

B0 =
1

3
�

0

	

d�e�E0−������P
2���,p,��	�p=0, �16�

where A0�A�p=0� and E0�E�p=0�.

B. Molecule channel

In this case, we start with the two-particle propagator

K��,p� = − �T��p����p
†�0�� , �17�

where

�p =� dq

2�

q�↑�p − q��↓�q� , �18�

and 
q is the pair wave function �in momentum representa-
tion� that localizes the relative distance between two par-
ticles. If there is a bound state �molecule�, then

K��,p,�� → − Zmole
−�Emol−���, � → 	 , �19�

and the pair propagator in the frequency representation has a
pole:

K�� − i�,p� =
Zmol�p�

i� + � − Emol�p�
+ regular part. �20�

Now, we introduce yet another function that features the
same molecular pole but has a simpler diagrammatic struc-
ture. The specifics of the resonant zero-range limit is that the

= +

-Σ

-G
(0)

-G
(0)-G -G

FIG. 1. Dyson equation for the single-particle Green’s
function.
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sum of all ladder diagrams for the interaction potential V�r�
has to be considered as a separate diagrammatic element. We
denote this sum by ��� , p� and consider it as a “bare pair
propagator.” Of course, the same approach can be taken in a
general case to replace the bare interaction potential with the
scattering T matrix, but in the zero-range limit, we really do
not have any other alternative for the ultraviolet-divergence-
free formulation. The sum of ladder diagrams takes the ul-
traviolet physics into account exactly and allows us to ex-
press ��� , p� in terms of the s-scattering length a. The ladder
structure of diagrams absorbed in ��� , p� also explains why
we treat it as a “pair propagator” �we will depict it with a
double line, see Fig. 2�. The exact expression for � is readily
obtained from the geometrical series �in frequency domain�

− � = − V + �− V�2� + ¯ , �21�

where the polarization operator is defined by

���,p� = �
q�kF

dq/�2��3

q2/2m + �p − q�2/2m − �
, �22�

and �=�+
F+�. Using suitable ultraviolet regularization,
one can cast the same expression in the universal form which
depends only on the s-scattering length:

�−1��,p� =
m

4�a
−

m

8�
�p2 − 4m� − �̄��,p� , �23�

�̄��,p� = �
q�kF

dq/�2��3

q2/2m + �p − q�2/2m − �
. �24�

For finite density of spin-up fermions, converting Eq. �23� to
the imaginary-time domain has to be done numerically. One
possibility is to use the inverse Laplace transform. We em-
ployed the bold diagrammatic Monte Carlo technology34 to
achieve this goal and further details are provided in Sec. IV.
The two-dimensional function ��� , p� is tabulated prior to
the polaron simulation.

In Fig. 2, we define function Q that can be viewed as a
renormalized pair propagator related to � by the Dyson equa-
tion. In the upper panel, we show the diagrammatic structure
for K, which includes dotted lines representing external func-
tions 
q, gray squares representing sums of all �-irreducible
diagrams, and the renormalized pair propagator Q. By
�-irreducible diagrams, we understand diagrams which can-
not be made disconnected by cutting them through a single �
line. All �-reducible diagrams are absorbed in the Q function
which is shown in the lower panel in Fig. 2. The gray circle
has nearly the same structure as the gray square �the zeroth-

order term is present in the square, but not in the circle�:
Since � is defined as the sum of ladder diagrams, all terms
which include ladder-type structures based on free one-
particle propagators have to be excluded from Q and K. With

the replacements G↓→Q, G↓
�0�→�, and �→ K̃, we find an

exact analogy between the one- and two-particle propaga-
tors.

The analogy can be carried out further by noting that the
structure of diagrams in Fig. 2 implies that Q has the same
poles as K, while the rest of the functions simply change the
value of the quasiparticle residue. Thus, if molecule is a
well-defined excitation, we expect that

Q�� − i�,p� =
Z̃mol�p�

i� + � − Emol�p�
+ regular part. �25�

This explains why introducing the function Q is convenient:
Now, Eqs. �12�–�16� are immediately generalized to the mol-
ecule case �up to replacements mentioned above�.

III. WORM ALGORITHM FOR FEYNMAN DIAGRAMS

In this section, we describe how the configuration space

of Feynman diagrams for � and K̃ is parametrized and up-
dated using Diag-MC rules. Our algorithm is designed to
treat polaron and molecule channels on equal footing. We
achieve this goal by introducing auxiliary diagrams which
contain two “loose” ends called “worms”—this was proven
to be an efficient strategy for reducing the MC autocorrela-
tion time when simulations are performed in the configura-
tion space with complex topology.35,36

A. Cyclic diagrams

We start with the introduction of cyclic diagrams. Though
we work in the imaginary-time representation at T=0 when
�� �0,	�, it is still convenient not to specify the time origin
and to consider diagrams on the imaginary-time circle. The
backbone of each cyclic diagram is a prediagram illustrated
in Fig. 3. It consists of a cyclic chain of the structure
G↓

�0���a����b�G↓
�0���c����d�G↓

�0���e���� f�¯ �all the times are
positive�. We do not explicitly show “directions” of the
propagators, since these are unambiguously fixed by the glo-
bal direction of all the backbone lines, which we select—
without loss of generality—to be from right to left. With this
convention, the left �free� spin-up end of any � line is out-
going, while the right end is incoming. A physical diagram is
obtained by pairwise replacing free spin-up ends with propa-
gators G↑. There are two ways to connect incoming and out-
going lines: �i� forward, i.e., in the direction of the backbone
propagators, and �ii� backward �opposite to forward�. For-
ward �backward� connections result in propagators G↑ with
positive �negative� times, see Figs. 4 and 5 for illustrations.
They represent particle �hole� excitations in the fermionic

= +

-K
-Q

= +

-K
~

-Γ-Q

FIG. 2. Defining functions Q and K̃ in the two-particle
channel.

τa τb τc τd τe τ f

FIG. 3. The backbone of the cyclic diagram.
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environment. It is important to emphasize that in cyclic dia-
grams, the only time variables are the positive time lengths
of G↓

�0�’s and �’s. There is no absolute time, and, correspond-
ingly, all moments in time are equivalent.

B. Worms

To have a MC scheme which simulates diagrams in one-
and two-particle channels on equal footing, we extend the
space of physical diagrams by allowing diagrams with two
special end points, or worms. They will be denoted I and M
and stand for the unconnected incoming �outgoing� spin-up
ends, see Fig. 6 for an illustration. Correspondingly, the en-
tire updating scheme is based on manipulations with I and
M. As it will become clear soon, of special importance for
normalization of MC results is the first-order diagram with
the worm, see Fig. 7. Its weight consists of just two factors,
G↓

�0���a� and ���b�.

C. Parametrization of diagrams

Apart from the diagram order and its topology, we select
time intervals of �’s and G↓

�0�’s and momenta of the spin-up
propagators as independent variables. The momenta of �’s
and G↓

�0�’s are then unambiguously defined by the momentum
conservation law, while the time interval of a spin-up propa-
gator is obtained by summing up the time intervals of �’s
and G↓

�0�’s covered by this propagator. Technically, we find it
convenient to work explicitly in the particle-hole representa-
tion for the spin-up propagators when backward spin-up
propagator is understood as a forward hole propagator with
the opposite momentum. This is achieved by introducing a
non-negative function,

G̃��,p� = 
 − G↑��,p� , p � pF

G↑�− �,− p� , p � pF,
� �26�

which is assigned to all spin-up lines �the global fermionic
sign of the diagram is defined separately by standard dia-
grammatic rules�. All momenta assigned to the spin-up lines

are understood as momenta of the corresponding G̃ propaga-
tors; i.e., they are either momenta of particles �for forward
propagators, they are nonzero only for p� pF� or momenta of

holes �for backward propagators, they are nonzero only for

p� pF�. An explicit formula for G̃ �subject to the above con-
ditions� is

G̃��,p� = ����e−�p2/2m−
F��. �27�

To simplify the description of updates below, we will ge-
nerically refer to G↓

�0� and � propagators as backbone lines
�BBLs� and denote them as D. The diagram order N is given
by the total number of spin-down propagators. We also use
special counters to characterize the topology of the diagram.
For each BBL, we define a cover number Nc equal to the

total number of G̃ lines covering a given BBL. A backbone
line with Nc=0 is called uncovered. Finally, physical
diagrams—the ones without worms—are divided into po-
laron �0� and molecule �1� sectors; the diagram sector is de-
fined by the difference between the number of particle and
hole spin-up propagators covering any of the G↓

�0� lines �the
same result is obtained by analyzing propagators covering �
lines after adding unity for the spin-up particle participating
in the ladder diagrams�.

D. Updates

The cyclic structure of diagrams in combination with the
possibility of considering nonphysical diagrams allows one
to construct a very simple ergodic set of updates. The mini-
mal set consists of two complementary pairs, insert/delete
and open/close, and one self-complementary update recon-
nect. The description that follows aims at the most transpar-
ent and straightforward realization of updates. Standard per-
formance enhancement tricks and optimization protocols are
not mentioned. In particular, we base our considerations on
the updating scheme which may propose a change leading to
a forbidden configuration. Such proposals are rejected as if
they result in zero acceptance ratio.

Insert. This update applies only to physical—no worms—
diagrams and is rejected otherwise. First, consider the po-
laron sector. Select at random one of the G↓

�0� propagators; if
it is covered, the update is automatically rejected. If the se-
lected propagator is uncovered, insert a pair of new propaga-
tors, ���1 ,p� and G↓

�0���2 ,p�, right after the selected one. The
new ���1 ,p� propagator is supposed to contain I and M at
its ends. Worms radically simplify this diagram-order in-
creasing update, since due to conservation laws, the mo-
menta of new BBLs are equal to the global momentum of the

I M

FIG. 6. A diagram with two worms, I and M.

M I

τb τa

FIG. 7. “Normalization” diagram. It is the simplest diagram
with the worm; its weight is a product of G↓

�0���a� and ���b�.

τa τb τc τd τe τ f

FIG. 4. Forward connection. The arc represents −G↑��=�c+�d

+�e�.

τc τd τe τ f τa τb

FIG. 5. Backward connection. The pair of � ends being con-
nected is precisely the same as in Fig. 4, but the direction is oppo-
site, and the arc represents −G↑��=−� f −�a−�b�.
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diagram p. The times �1 and �2 are drawn from normalized
probability distributions W���1� and W↓��2� �arbitrary at this
point�. Note that W���1� and W↓��2� can depend on p as a
parameter. The acceptance ratio for this update is

Pins = NCN+1
���1,p�G↓

�0���2,p�
W���1�W↓��2�

, �28�

where CN is an artificial weighing factor ascribed to all worm
diagrams of order N �it can be used for optimization pur-
poses and depend on p too�. A natural choice for W functions
is to make them proportional to BBL, i.e.,

W���� =
���,p�

� ����,p�d��

, W↓��� =
G↓

�0���,p�

� G↓
�0����,p�d��

.

�29�

Then, to have an acceptance ratio of order unity and inde-
pendent of p, we choose

CN =
1

N�
, � =� ���1,p�d�1� G↓

�0���2,p�d�2. �30�

In the rest of the paper, we will refer to this choice of W and
CN as “optimized,” though we do not mean that it is the best
one possible for the entire scheme. For the optimized choice,

Pins = N/�N + 1� . �31�

In the molecule sector, we essentially repeat all steps,
up to minor modifications. Now, the propagator being se-
lected is � �once again, the update is rejected if the selected
propagator is covered.� Then, a pair of new propagators,
G↓

�0���1 ,p� and ���2 ,p�, is inserted in front of the selected
uncovered propagator. The new propagator ���2 ,p� inherits
the outgoing spin-up line previously connected to the se-
lected �; the latter gets instead the M end of the worm,
while the I end is attached to the new �. The acceptance
ratio is identical to Eq. �28� �for the optimized choice, it is
N / �N+1�	. The polaron and molecule sectors are mutually
exclusive due to particle conservation; thus, only one type of
the insert update is applicable to a given diagram.

Delete. This update converts worm diagrams to physical
ones while reducing the diagram order. It applies only to
diagrams of order N�1, with worms being separated by one
uncovered BBL. Otherwise, the update is rejected. If worms
are separated by an uncovered BBL, then the left and right
neighbor BBLs are also uncovered, and an update opposite
to insert is possible. In delete, we simply remove two con-
secutive BBL and worms from the diagram. Its acceptance
probability is the inverse of Eq. �28�,

Pdel =
1

�N − 1�CN

W���1�W↓��2�
���1,p�G↓

�0���2,p�
. �32�

With Eqs. �29� and �30�, we have

Pdel = N/�N − 1� �optimized� . �33�

Close. The update applies only to diagrams with the
worms. The proposal is to connect I and M with a line

G̃�� ,q� and eliminate worms from the diagram. The momen-
tum variable q is drawn from the probability distribution
W↑�q�, while � is the time interval between I and M to be
covered by the new propagator. There are two ways of con-
necting I and M, forward and backward. The ambiguity is
automatically resolved by the absolute value of the momen-
tum variable q: If q� pF �q� pF�, the propagator is supposed
to go forward �backward�. In practice, we first select the
direction �with equal probabilities�, and then generate the
momentum variable q accordingly: either q� pF or q� pF.

The acceptance ratio for this update is

Pcl =
2

�2��3NCN

G̃��,q�
W↑�q� �

�

D����,p���
D����,p��

, �34�

where the subscript � runs through all BBLs to be covered by
the new propagator �clearly, �=�����. Primes indicate new
values of the corresponding momenta:

p�� = p� − q . �35�

As usual, the distribution function W↑�q� can depend on �
and the direction of the propagator. The natural choice for
this function would be

W↑�q� =
G̃��,q�
����

, �36�

���� = ��q�pF

G̃↑��,q�dq �forward�

�
q�pF

G̃↑��,q�dq �backward� ,� �37�

leading to the optimized acceptance ratio

Pcl =
2�����
�2��3 �

�

D����,p���
D����,p��

. �38�

In this section, we deal with diagrams based on bare
propagators. To avoid double counting, we have to exclude
all cases which can be reduced to ladders already summed in
�’s. When M and I are on the nearest-neighbor BBL, the
proposal to connect them with the spin-up particle propaga-
tor is rejected. The last rule to be monitored it to restrict all
physical diagrams to be either in the polaron or molecule
sectors, i.e., sectors different from 0 and 1 are not allowed.

Open. The update applies only to physical diagrams and
proposes to create a worm by selecting at random and re-
moving one of the spin-up propagators. The acceptance ratio
is given by the inverse of Eqs. �34� and �38�,

Pop =
�2��3NCN

2

W↑�q�

G̃↑��,q�
�

�

D����,p���
D����,p��

, �39�

where the subscript � runs through all BBLs covered by the
propagator, �=����, and q is the momentum of the selected
spin-up propagator. Primes indicate new values of the BBL
momenta:
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p�� = p� + q . �40�

In the optimized version, we have

Pop =
�2��3

2�������

D����,p���
D����,p��

. �41�

Reconnect. The purpose of this update is to change the
topology of diagrams with the worm. The proposal is to se-

lect at random one of the G̃ propagators and swap its outgo-
ing end with M; the momentum of the propagator remains
the same, and only its time variable changes from �0 to �0�.
The acceptance ratio is given by

Prec =
G̃��0�,q�

G̃��0,q�
�

�

D����,p���
D����,p��

. �42�

The subscript � runs through all BBLs that will change their
momenta �and cover numbers Nc’s� as a result of the update.
Topologically, there are two different situations �the two are
complementary to each other in terms of the update�: �i� M
is covered by the propagator in question and �ii� M is not
covered by the propagator. Correspondingly, the new values
of the diagram variables are calculated as

��0�,p��� = 
��0 − �,p� + q� �i�
��0 + �,p� − q� �ii� ,

� �43�

with �=����.
The above set of updates is ergodic. It can be supple-

mented by additional updates that may improve the algo-
rithm performance by more efficient sampling of the diagram
variables and topologies. Overcomplete sets of updates are
also useful for meaningful tests of the detailed balance. The
possibilities are endless, and here we simply mention two
updates we have been using.

Time shift. We propose new time variables, ��→���, for all
uncovered BBLs �labeled here with the subscript ��. The
acceptance probability is

Psh = �
�

W����,p�D�����,p�
W�����,p�D����,p�

. �44�

All uncovered propagators have the same momentum p.
With the optimized choice for W���� ,p��D���� ,p�, the ac-
ceptance ratio becomes unity.

Redirect. Here, we propose to select at random one of the

G̃ propagators and change its direction to the opposite. Si-
multaneously, we change the momentum of the selected
propagator �resulting in new momenta for all BBL it covers
or will cover as a result of the update�. Let the selected

propagator be G̃�� ,q�, and the new one be G̃��� ,q�� with �
=����, and ��=����, where � runs through all BBLs covered

by the propagator G̃↑�� ,q� and � runs through all BBLs to be

covered by the propagator G̃↑��� ,q��. We assume that q� is
drawn from the distribution W↑ introduced above. In this
case, the acceptance ratio is given by

Prdr =
W↑��,q�G̃���,q��

W↑���,q��G̃��,q�
��

�

D����,p���
D����,p�����

�

D����,p���
D����,p��� ,

�45�

p�� = p� + q, p�� = p� − q�. �46�

For the optimized choice of W↑, see Eq. �36�,

W↑��,q�G̃���,q��

W↑���,q��G̃��,q�
→

�����
����

. �47�

Diagram sign. The sign of a diagram with worms is some-
what arbitrary since it is not physical. The ambiguity is re-
solved by assuming that M is always connected to I in the
backward direction by an auxiliary unity propagator. Then, to
comply with the diagrammatic rules, we change the configu-
ration sign each time any of the following updates are ac-
cepted: �i� reconnect, �ii� open/close updates dealing with
spin-up propagators in the forward direction, �iii� insert/
delete in the molecule sector, and �iv� redirect. For open/
close updates dealing with spin-up propagators in the back-
ward direction, the sign remains the same, because here the
sign coming from changing the number of closed spin-up
loops is compensated by the sign in Eq. �26�; the same is also
true for insert/delete updates in the polaron sector �due to our
choice of the auxiliary propagator sign�. For precisely the
same sign compensation reason, the redirect update does
change the sign despite the fact that it preserves the number
of loops.

E. Estimators

Only physical diagrams with one uncovered G↓
�0� propaga-

tor contribute to the polaron self-energy. We will call them
G� diagrams. An example is shown in Fig. 8. �Depending on
restrictions imposed on the configuration space �easy to
implement in any scheme�, physical diagrams with more
than one uncovered G↓

�0� propagator are either filtered out at
the time when the contribution to the self-energy histogram
is made, or, are not produced in the simulation at all.	 They
factorize into a product of G↓

�0� and some diagram contribut-
ing to the self-energy �. The utility of cyclic representation
is that the uncovered propagator can be anywhere on the
backbone. In view of factorization, it is easy to write the MC
estimator for the integral �to simplify notations, we omit ir-
relevant to the discussion momentum p�

τa τb τc τd τe τ f

FIG. 8. A G� diagram contributing to the polaron self-energy. It
factorizes into a product of G↓

�0���a� and ���=�b+�c+�d+�e+� f�.
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I = �
0

	

f�������d� , �48�

where f��� is some function �see, e.g., Eqs. �13� and �14�	.
Indeed, consider the estimator

EI = �G�f��� , �49�

which counts all instances of G� diagrams with an addi-
tional weight f���. Here, �G� is unity for each G� diagram
and zero otherwise, and � is the total duration in time of the
� part of the G� diagram. The Monte Carlo average of this
estimator is

�EI�MC � �
0

	

G↓
�0�����d���

0

	

f�������d� . �50�

Similarly, within the same scheme, we collect statistics of all
“normalization” diagrams, see Fig. 7, using an estimator pro-
jecting to the first-order diagram with the worm, �norm. Then,

��norm�MC � C1�
0

	

G↓
�0�����d���

0

	

����d� . �51�

The proportionality coefficient cancels in the ratio of the two
averages, leading to

I = C1

�EI�MC

��norm�MC
�

0

	

����d� . �52�

In particular, for the optimal choice of CN, we have

I =
�EI�MC

��norm�MC
��

0

	

G↓
�0����d��−1

. �53�

Imaginary-time integrals for the product of ���� and ex-
ponentials, see Eqs. �13� and �14�, are all we need to deter-
mine the polaron energy and residue. For the bold-line gen-
eralization of the scheme described in the next section, we
need the entire dependence of self-energy on time and mo-
mentum. This is achieved by differentiating partial contribu-
tions of G� diagrams. For example,

E�,i = �G����bini
�54�

is an estimator counting contributions with � within the ith
imaginary-time bin of width ��i centered at the point �i. Due
to linear relation between I and ����, we immediately realize
that �for optimized choice�

���i� =
�E�,i�MC

��norm�MC
���i�

0

	

G↓
�0����d��−1

. �55�

In complete analogy with the polaron case, we consider

�K̃ diagrams that contain one, and only one, uncovered �
propagator, see Fig. 9, and use them to collect statistics for
the molecule self-energy. Up to straightforward replacements

G↓
�0�↔�, �↔ K̃, all relations of this section hold true.

IV. SIMULATING T MATRIX �„� ,p… BY BOLD
DIAGRAMMATIC MONTE CARLO

Despite relatively simple form of Eqs. �23� and �24�, tabu-
lating the two-dimensional function ��� , p� with high accu-
racy using the inverse Laplace transform of ��� , p� turns out
to be a time consuming job. In this work, we have used an
alternative route based on the bold diagrammatic Monte
Carlo technology introduced recently in Ref. 34. The crucial
observation is that the T matrix ��� , p� can be diagrammati-
cally related to its vacuum counterpart �0�� , p�, see Fig. 10,
with the latter being known analytically:

�0��,p� =
4�

m3/2e��F+�−p2/4m��g���� , �56�

where

g���� = −
1

���
� �EeE� erfc���E�� , �57�

for negative and/or positive values of the scattering length,
E=1 /ma2, and erfc�x� is the error function. �The Fermi en-
ergy and the chemical potential in Eq. �56� come from the
global energy shift necessary for compliance with the Dyson
equation shown in Fig. 10.	

With the explicit expression for the product of two
vacuum propagators, the relation shown in Fig. 10 reads �the
momentum argument of ��� , p� is suppressed for clarity	

− ���� = − �0��� + �
0

�

ds�
s

�

ds��0�s���� − s��

��
q�kF

dq

�2��3 �− e−��p − q�2+q2	�s�−s�/2m� . �58�

Equation �58� is one of the simplest examples of problems
solvable by bold diagrammatic Monte Carlo.34 We refer the
reader to Ref. 34, where the algorithm of solving such equa-
tions is described in detail. Here, we just mention some spe-
cific details. We find it helpful to start from a good trial
function for obtaining high-accuracy results in a short simu-

τb τc τd τe

FIG. 9. A �K̃ diagram contributing to the molecule self-energy.

It factorizes into a product of ���b� and K̃��=�c+�d+�e�. The ver-
tical dashed lines cut �for the sake of better visual perception� the
same ���b� line.

= -
-Γ -Γ0

FIG. 10. Diagrammatic equation for the T matrix ��� , p�. The
arc is the vacuum spin-up propagator with the constraint q�kF on
its momentum q. The meaning of this equation is nothing but cor-
recting the vacuum result �0 by subtracting contributions from the
spin-up fermions with momenta q�kF.
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lation time. We achieve this goal using the following proto-
col. We start the simulation by restricting imaginary time to
be smaller than �max and select relatively short �max. When
the result is accurate enough, we extrapolate it to longer
times, increase �max, and restart the simulation with the ex-
trapolated function, �ext serving as the trial function, i.e., we
substitute �=�ext+�� to Eq. �58� and solve for ��. If nec-
essary, this procedure can be repeated several times.

V. SIMULATION RESULTS AND SERIES
CONVERGENCE PROPERTIES

Nearly all results in this paper were obtained by simulat-
ing diagrams built on bare one- and two-particle propagators
G↓

�0� and �. We observed that the corresponding series are
likely to be divergent. This, however, does not mean that the
entire idea of calculating contributions from diagrams of
higher and higher order and extrapolating results to the infi-
nite order is useless and ill defined. On the contrary, it was
recognized long ago that appropriate resummation tech-
niques allow one to determine reliably the function standing
behind the divergent series. Moreover, all resummation tech-
niques �formally, there are infinitely many�, if applicable,
have to agree with each other on the final result. This impor-
tant observation vastly increases the utility of the Diag-MC
technique we are developing here. In the next section, we
demonstrate that making the series for � self-consistent with
the use of Dyson equation—bold-line technique—is another
way to improve series convergence properties.

For the resonant Fermi polaron considered here, the
Cesàro-Riesz summation method solves the convergence
problem. In general, for any quantity of interest—in our
case, they are polaron or molecule self-energy—one con-
structs partial sums

��N*� = �
N=1

N
*

DNF
N

�N
*

�
, �59�

defined as sums of all terms up to order N* with the

Nth-order terms being multiplied by the factor F
N

�N
*

�
. In the

limit of large N* and N�N* the multiplication factors F
approach unity, while for N→N*, they suppress higher-order
contributions in such a way that ��N*� has a well-defined
N*→	 limit. There are infinitely many ways to construct
multiplication factors satisfying these conditions. This imme-
diately leads to an important consistency check: Final results
have to be independent of the choice of F. In the Cesàro-
Riesz summation method, we have

F
N

�N
*

�
= ��N* − N + 1�/N*	� �Cesàro-Riesz� . �60�

Here, ��0 is an arbitrary parameter ��=1 corresponds to the
Cesàro method�. The freedom of choosing the value of
Riesz’s exponent � can be used to optimize the convergence
properties of ��N*�.

We proceed as follows. For the series truncated at order
N*, we first determine the polaron and molecule energies and
then study their dependence on N* as N*→	. In Fig. 11, we

show results for the molecule energy at kFa=1. Without re-
summation factors, the data are oscillating so strongly that
any extrapolation to the infinite diagram order would be im-
possible; we consider this as an indication that the original
series are divergent. Oscillations remain pronounced for �
=1 but are strongly suppressed for larger values of �, so that
for �=4, we were not able to resolve odd-even oscillations
anymore. However, the smoothness of the curve for large �
=4 comes at the expense of increased curvature, which ren-
ders the extrapolation to the 1 /N*→0 limit more vulnerable
to systematic errors. Empirically, we constructed a factor
F

N

�N
*

�
which leads to a faster convergence �see an example in

Fig. 11�:

F
N

�N
*

�
= C�N

*
� �
m=N

N
*

exp�−
�N* + 1�2

m�N* − m + 1�� , �61�

where C�N
*

� is such that F
1
�N

*
�
=1. The most important con-

clusion we draw from Fig. 11 is that, in our case, the series
are subject to resummation methods and the result of ex-
trapolation is method independent. We consider small varia-
tions in the final answer due to different resummation tech-
niques and extrapolation methods as our systematic errors.
An example is shown in Fig. 12. In the next section, we will
present evidence that the actual answer is closer to the upper
bound of −0.615. We see that in the absence of additional
information, one has to allow for different ways of extrapo-
lating the answer.

Apart from consistency checks, one can test numerical
results against an analytic prediction for the strong coupling
limit kFa→0 corresponding to a compact molecule scatter-
ing off majority spins. In this limit, the molecule energy is
given by the expression

FIG. 11. The molecule energy �at kFa=1� as a function of the
maximum diagram order N* for different summation techniques:
Cesàro �open squares�, Riesz �=2 �filled circles, fitted with the
parabola y=−2.6164+0.280 13x+0.016 38x2�, Riesz �=4 �open
circles, fitted with the parabola y=−2.6190+0.616 35x−0.3515x2�,
and Eq. �61� �stars fitted with the horizontal dashed line�. Repro-
duced from Ref. 14.
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Em = −
1

ma2 − 
F +
2�ã

�2/3�m
n↑ �kFa → 0� , �62�

where the first term is the molecule binding energy in
vacuum, the second term reflects finite chemical potential of
spin-up fermions, and the last term comes from the interac-
tion between the composite molecule with the Fermi gas.
The molecule-fermion s-scattering length ã�1.18a �Refs. 37
and 38� is obtained from the nonperturbative solution of the
three-body problem. Agreement with Eq. �62� provides a ro-
bust test for the entire numerical procedure of sampling
asymptotic diagrammatic series. Our data are in a perfect
agreement with the ã�1.18a result within the statistical un-
certainty of the order of 5%, see the lower panel in Fig. 13.

Somewhat surprising outcome is that Em is described by
Eq. �62� very accurately all the way to the crossing point.
This fact can be used to approximate the energy density
functional of the superfluid polarized phase in the strongly
imbalanced gas for kFa�1 as that of the miscible dilute
molecule gas coupled to spin-up fermions21 �see also Refs.
41 and 42�,

E =
3

5
�Fn↑ − � 1

ma2 −
2�ã

�2/3�m
n↑�n↓ +

�aMM

m
n↓

2, �63�

where n↑, n↓ are densities of unpaired spin-up fermions and
molecules, and aMM �0.6a is the molecule-molecule scatter-
ing length.40 Within this approach, it is found that the system
undergoes phase separation for kFa�0.56.21

Phase separation precludes one from investigating the
crossing point between the polaron and molecule curves in
trapped imbalanced Fermi gases. It also rules out the multi-
critical point on the phase diagram predicted in Ref. 19.
These issues, however, are not directly relevant to our study
of properties of one spin-down particle. In Fig. 13, we
present polaron and molecule energies in the region of kFa

1, where the nature of the quasiparticle state changes. The
crossing point is found to be at �kFa�c=1.11�2�. Overall, both
curves are in excellent agreement with the variational Monte

Carlo simulations.18,21 There is a certain degree of accidental
coincidence in the fact that the polaron self-energy is nearly
exhausted by the first-order diagram considered in Ref. 39,
see also Fig. 12. As we show in the next section, both
second-order and third-order diagrams make considerable
contributions to the answer, but they happen to nearly com-
pensate each other, i.e., Green’s function renormalization and
vertex corrections have similar amplitudes and opposite
signs.

The intersection of the polaron and molecule curves can
be determined very accurately because both solutions are de-
scribing well-defined quasiparticles at the crossing point.
This is because matrix elements connecting the two branches
involve at least four particles and their on-resonance phase
volume is zero at �kFa�c. Indeed, the energy, momentum, and
particle number �for each spin direction� conservation laws
dictate that polaron decays into molecule, two holes, and one
spin-up particle �molecule decays into polaron two spin-up
particles and one hole�. For this process, the final-state phase
volume gets negligibly small as compared to the energy dif-
ference �Ep−Em� at and in the vicinity of the crossing point.

The data for the effective mass are presented in Fig. 14.
At the crossing point, the effective mass curve is discontinu-
ous as expected for the exact crossing between two solutions.
One important observation is that good agreement with Eq.

0 0.1 0.2 0.3

-0.618

-0.616

-0.614

-0.612

-0.61

-0.608

E

1/N*

a = 0-1

FIG. 12. �Color online� The polaron energy �at the unitarity
point a−1=0� as a function of the maximum diagram order N* using
Eq. �61�. The data are fitted using linear −0.618+0.033 /N* �red�
and exponential −0.6151+0.026e−0.39N

* �black� functions to have
an estimate of systematic errors introduced by the extrapolation
procedure.

(a)

(b)

FIG. 13. �Color online� Polaron �black circles� and molecule
�red triangles� energies �in units of 
F� as functions of kFa. The
dashed line on the lower panel corresponds to Eq. �62�. Reproduced
from Ref. 14.
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�62� for molecule energy in the entire region kFa�1 does
not guarantee yet that the compact-boson approximation is
accurate in the same region if properties other than energy
are addressed. In this sense, even good agreement with Eq.
�62� has to be taken with a grain of salt since Eq. �62� as-
sumes that the molecule mass is 2m and independent of kFa.
The actual effective mass is significantly enhanced in the
vicinity of �kFa�c.

VI. NUMERIC REALIZATION
OF THE BOLD-LINE TRICK

The success of the Diag-MC method for Fermi polarons
is, to a large extent, due to small error bars we have for the
sign-alternating sums of high-order diagrams. In general, it is
expected that the computational complexity of getting small
error bars for sign-alternating sums in the limit of large N is
exponential �or factorial� in N since it usually scales with the
configuration space volume. Any tricks that reduce the con-
figuration space while keeping the scheme exact are worth
investigating. In fact, we have already used one of such
tricks above when we introduced � summing up all ladder
diagrams. As a result, the diagram order was defined by the
number of G↓ lines, not bare interaction potential vertices,
and ladder-reducible diagrams were excluded from the con-
figuration space.

In this section, we go one step further and apply another
method, well known in analytic calculations �but virtually
never carried out analytically to high order; for first-order
diagrams, it is known as the self-consistent Born approxima-
tion�. It is called the bold-line trick. The relation between G↓,
G↓

�0�, and � accounts for the infinite sum of diagrams forming
geometrical series. Now, if one-particle lines in self-energy
diagrams are representing exact Green’s function �in this
case, they are drawn in bold�, then many diagrams have to be
excluded to avoid double counting. Namely, any structure
which can be interpreted locally as part of the Dyson equa-
tion for G↓ has to be crossed out. Though formally the dia-
gram order is still defined by the number of G↑, it is, in fact,
representing a whole class of diagrams �up to infinite order�

in the original, or bare, terms. Clearly, the MC scheme is
now self-consistently defined and potentially even finite
number of “bold” diagrams can capture nonperturbative ef-
fects.

Recently, we have demonstrated that the bold-line trick is
compatible with Diag-MC and the corresponding scheme has
been termed the bold diagrammatic Monte Carlo.34 There are
two routes for implementing the bold-line technique. The
first one is to arrange two �running in parallel� coupled
Monte Carlo processes: one sampling the series for the self-
energy in terms of exact propagators and the other one sam-
pling propagators from the Dyson equation. The latter pro-
cess is essentially the same as the process we use for
precalculating �, with an important feature that the self-
energy used in the sampling is permanently updated. The
second route is specific for Dyson-type equations which al-
low trivial algebraic solution in momentum representation.
In the present work, we use the second route.

The implementation of the bold-line trick requires that we
introduce an update which changes the global momentum p
of the diagram. This update applies only to the simplest nor-
malization diagrams, see Fig. 7. The integrated weight of
normalization diagrams is given by ��p�, see Eqs. �30� and
�51�. In the update, we select the new value for the global
momentum from the probability distribution ��p� and pro-
pose new time variables for the spin-down and pair propaga-
tors from the optimized probability distributions W���1 ,p�
and W↓��2 ,p�. Since new variables are seeded using the ex-
act diagram weight, the acceptance ratio is unity. In practice,
the modulus of the global momentum variable is defined on
the discrete set of points.

We start the simulation with G↓=G↓
�0� and collect statistics

to the momentum-time histogram of � from bold-line dia-
grams. After a certain number of updates, we perform fast
Fourier transform of ��� , p� to obtain ��� , p� and calculate
G↓�� , p� using Dyson equation, which is then transformed
back to G↓�� , p�. The simulation proceeds as before with the
G↓�� , p� function being recalculated at regular time intervals
to reflect additional statistics accumulated in �. Obviously,
the self-consistent feedback present in the bold-line scheme
at the beginning of the simulation violates the detailed bal-
ance equation each time the function G↓ is updated. Only in
the long simulation time limit when both � and G do not
change anymore is the detailed balance satisfied.

The other point which requires special care is the treat-
ment of ladder-reducible diagrams. In the bold-line imple-
mentation, we have to allow ladder diagrams back, but each
spin-down line in the ladder-reducible structure now has to
be understood as a difference G↓−G↓

�0�. Indeed, ladder dia-
grams included in � are built on bare propagators and, thus,
have to be corrected for the difference between the bare and
exact propagators.

Finally, we apply the bold-line approach in the molecule
channel as well. In fact, the scheme was designed to be iden-
tical in the one- and two-particle sectors. Now, in all self-
energy diagrams, we have to substitute G↓

�0� for G↓ and � for
Q, with both G and Q being periodically recalculated to re-

flect additional statistics accumulated to the � and K̃ histo-
grams. Correspondingly, diagrams which can be locally in-

FIG. 14. �Color online� Polaron �black circles� and molecule
�red triangles� effective masses as functions of kFa. The vertical
dotted line stands for �kFa�c=1.11. The dashed line is the contribu-
tion from the first diagram �Ref. 39�. Reproduced from Ref. 14.
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terpreted as part of the Dyson equation in the molecule
sector have to be excluded. �Ironically, this means that ladder
diagrams are not allowed once again with the exception for

the first-order diagram in K̃ which ensures that ladders are
built on G↓, see previous paragraph.	 The updates and accep-
tance ratios do not change in the bold-line representation, but
in the optimized version, the probability distributions W↓ and
W� �and their normalization integrals� are now proportional
to G↓ and Q, i.e., they have to be changed each time the new
solutions of the Dyson equations are generated.

As discussed in Ref. 34, the Monte Carlo procedure of
solving self-consistent equations is more robust and has bet-
ter convergence properties then standard iterations, espe-
cially for sign-alternating series. There are additional tools to
improve the efficiency and convergence, some are self-
explanatory. It definitely helps us to start with the initial
function G↓ as close as possible to the actual solution �the
final answer should not depend on small variations of the
initial choice�. For example, the simulation for a given value
of kFa may start with the final solution for the neighboring
kFa point. The initial statistics has to be discarded or
“erased” according to some protocol. If analytic expressions
in special cases are available, e.g., in the perturbation theory
or strong coupling limits, they can be used to match numeric
data and restrict the parameter range probed in the simula-
tion.

In Fig. 15, we present data for the polaron energy at the
unitary point calculated using the self-consistent scheme. As
before, the diagram order is defined by the number of spin-
down propagators. To see the difference between various ap-
proaches, we first calculated E with the bold-line trick imple-
mented only for spin-down propagators �black squares� and
then for both spin-down and molecule propagators �red
circles�. This plot makes it clear that the perturbation theory
result39 is accurate because corrections to spin-down propa-
gators nearly cancel vertex corrections. Figure 15 is also tell-
ing the story which we observe happening over and over
again for other strongly correlated condensed matter prob-
lems: It does not really make any sense to propose “better”

approximations which account only for some incomplete set
of diagrams. For example, if in the first-order diagram � is
replaced with Q �self-consistent Born approximation in the
molecule sector�, the answer is getting much worse. More-
over, using exact expressions for G↓ and Q in irreducible
diagrams up to third order results in an oscillation �the high-
est circle in Fig. 15� which forces one to think that the final
answer is probably even further up. Fortunately, with the
bold-line Diag-MC technique developed in this paper, we
can see how different approximations work and what their
actual value is, term by term.

All results presented in this paper, can be obtained on a
single workstation in a matter of weeks �this includes differ-
ent values of the scattering length�.

VII. CONCLUSIONS

The sign problem in MC simulations is the problem of
obtaining small error bars for system parameters which allow
reliable extrapolation of results to the thermodynamic limit.
Most MC schemes are based on simulations of finite-size
systems �of linear size L� with the configuration space vol-
ume growing exponentially and/or factorially with L3 and
inverse temperature 1 /T �for quantum models�. Since error
bars grow with the configuration space volume, they are
completely out of control before a meaningful extrapolation
to the thermodynamic limit can be done.

Computational complexity of the Diag-MC technique for
sign-alternating series is also exponential and/or factorial in
the diagram order, and final results have to be extrapolated to
the N*→	 limit. In this sense, the technique does not solve
the sign problem but offers a better route for handling it. One
important difference between the configuration space volume
for finite-size systems and connected Feynman diagrams is
that the latter deals with the thermodynamic limit directly.
Moreover, the same diagrams describe systems of different
dimensions and temperature. The list of advantages does not
end here because one can employ all known analytic tools to
reduce the configuration space and thus make an exponential
advance toward acceptable solution of the sign problem. By
simulating the self-energy instead of the Green’s function
�this was not done before�, the configuration space is reduced
to that of G-irreducible graphs. Using ladder diagrams, we
convert the standard perturbation theory in the bare potential
V into the series expansion in terms of �. Finally, the entire
scheme is made self-consistent by writing diagrams in terms
of exact G and Q. Since self-consistency accounts for infinite
sums of diagrams forming geometrical series, the configura-
tion space of bold-line diagrams is reduced further. All com-
bined, the final formulation is compact enough to perform
the N*→	 extrapolation reliably before error bars explode.
Strictly speaking, having convergent series is not a require-
ment because resummation techniques are well defined
mathematically, and their work is guaranteed by theorems
based on properties of analytic functions.

At the moment, we do not see any obvious limitations of
the method described here. On the contrary, we believe that it
can be used to study a generic interacting many-body sys-
tem, Bose or Fermi. Of course, the structure of diagrams and
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FIG. 15. �Color online� Polaron energy as a function of the
maximum diagram order N* at the unitary point kFa=	 within the
bold-line approach. Black squares show results when the bold-line
approach was implemented only for the polaron propagator. When
both polaron and molecule propagators in diagrams are given by G↓
and Q, one obtains results shown by red circles.
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the optimal strategy of applying analytic tools are Hamil-
tonian dependent and have to be studied case by case. For
example, in lattice models, there is no urgent need to deal
with the ultraviolet limit explicitly, and one can proceed with
the expansion in the bare interaction potential V; the so-
called random phase approximation can be used to replace V
with the screened interaction potential; the latter can be com-
bined with ladder diagrams, etc. The bold-line trick for
Green’s functions can be implemented in any scheme.

To summarize, we have shown that polaron-type prob-
lems can be studied numerically with high accuracy using
Diag-MC methods even when the corresponding diagram-
matic expansion is not sign positive and divergent. Previ-
ously, such series were regarded as hopeless numerically, to
such an extent that nobody was actually trying. Using

Diag-MC approach, we calculated energies and effective
masses of resonant Fermi polarons in the BCS-BEC cross-
over region and determined that the point where the ground-
state switches from the single-particle �fermionic� sector to
two-particle �bosonic� sector is at kFa=1.11�2�. This point
falls inside the phase separation region for the dilute mixture
of spin-down fermions in the Fermi gas of spin-up
particles.21
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